西方期权定价理论 – 金融百科 – 金融知识

西方期权定价理论

西方期权定价理论

西方期权定价理论

西方期权定价理论

期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品(underlying assets)的选择权。期权价格是期权合约中唯一随市场供求变化而改变的变量,它的高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。早在1900年法国金融专家劳雷斯·巴舍利耶就发表了第一篇关于期权定价的文章。此后,各种经验公式或计量定价模型纷纷面世,但因种种局限难于得到普遍认同。70年代以来,伴随着期权市场的迅速发展,期权定价理论的研究取得了突破性进展。研究西方期权定价理论,不仅有助于深化我们对期权及其他金融创新工具的研究,且对我国实业界在条件成熟时进入国际期权市场具有一定指导意义。由于当今西方主要期权理论均是从股票期权的定价发展而成,本文亦将结合股票期权进行讨论。

一、布莱克-肖莱斯期权定价模型

1973年,美国芝加哥大学学者f·布莱克与m·肖莱斯提出了布莱克-肖莱斯期权定价模型(black-scholes option pricing model,以下简称布-肖模型),对股票期权的定价作了详细的讨论〔(1)a〕。此后,不少学者又对该模型进行了修正、发展与推广,极大地推动了期权定价理论的研究。布-肖模型的提出是期权定价理论的重大突破,因而,布莱克与肖莱斯被公认为研究期权定价理论的杰出代表。

(一)假设前提

为了构建其期权定价模型,布莱克与肖莱斯提出了如下假设:

第一,作为基础商品的股票价格是随机波动的,且满足几何维纳过程(geometric wiener process)。这意味着:1.基础商品价格波动是独立的,将来的价格水平只与现在的价格相关,与过去的价格无关。2.基础商品价格不能停止变动,且这种波动是连续的。3.在极短时间内,基础商品价格只能有微小的波动,不会出现跳跃。用数学公式来表示,即为:

ds[t]=ms[t]d[t]+σs[t]d[z] (1)

其中s[t]表示股票价格,m为瞬时期望收益。σ为无风险连续收益率的标准差,dz为标准维纳过程,是期望值为0,标准差为1的标准正态分布变量。

第二,股价服从于对数正态分布,这是几何维纳过程所隐含的一个条件,表示股价的对数满足正态分布(见下图)。

(附图 {图})

这一分布具有两个特点:1.非对称性。即变量对均值上升与下跌相同幅度的概率不一样,一般股价上升100%的概率与下降50%的概率相当〔(1)b〕。正因为如此,保证了股价的非负性。2.从概率分布图向两翼,特别是向右的扩展可以看出,股票价格较大幅度地偏离均值的概率也是不容忽视的,但总体上股票价格在均值附近窄幅波动的情况更普遍。

第三,资本市场完善。即不存在交易手续费、税收及保证金等因素。

第四,市场提供了连续交易机会。即假定所有的股票都是无限可分的,交易者能在无交易成本情况下,不断调整股票与期权的头寸状况,得到无风险组合。

第五,存在一无风险利率。在期权有效期内,投资者可以此利率无限制地存款或贷款。

第六,股票不派发股息,期权为欧洲期权。

第七,基础商品价格波动的离散度〔(2)b〕为一常数。

(二)布-模型的主要内容

1.买方期权定价

基于上述假设,布莱克与肖莱斯认为期权提供了对股票组合进行保值的有效的途径。在股票投资中存在着系统风险与非系统风险,后者可以通过投资对象的分散化来减少,但前者却不能。但如果把股票市场与期权市场联系起来,则投资者就可以不断地调整股票与期权的头寸状况,形成一个完全抵补的资产组合,在该组合中,股票投资的损益刚好可被期权交易的益损冲抵,从而消除了股票投资的系统风险。此时,股票与期权组合的收益率应该等同于无风险债券的收益率(即无风险利率),期权的价格也即其均衡价格〔(3)b〕。

现假定我们拥有q[s]股的某种股票,为了消除系统风险,需卖出一定数量的股票期权(q[c]个合约,为简便,假设一个合约的单位为1股),则:v[h]=q[s]·s-q[c]·c (2)

v[h]表示该组合的初始状况,c为买方期权价格,s为股票市价,减号表示卖出。

(附图 {图})

令q[s]=1,并将(3)式代入(5)式,得出:

(附图 {图})

因为股价形成服从几何维纳过程(见(1)式),根据这一类随机过程的特点,可得到如下伊藤公式〔(1)c〕:

(附图 {图})

对于买方期权,其价格还具有如下特点:

(附图 {图})

其中n(d